Estimating Density Ridges by Direct Estimation of Density-Derivative-Ratios
نویسندگان
چکیده
Estimation of density ridges has been gathering a great deal of attention since it enables us to reveal lower-dimensional structures hidden in data. Recently, subspace constrained mean shift (SCMS) was proposed as a practical algorithm for density ridge estimation. A key technical ingredient in SCMS is to accurately estimate the ratios of the density derivatives to the density. SCMS takes a three-step approach for this purpose — first estimating the data density, then computing its derivatives, and finally taking their ratios. However, this three-step approach can be unreliable because a good density estimator does not necessarily mean a good density derivative estimator and division by an estimated density could significantly magnify the estimation error. To overcome these problems, we propose a novel method that directly estimates the ratios without going through density estimation and division. Our proposed estimator has an analytic-form solution and it can be computed efficiently. We further establish a non-parametric convergence bound for the proposed ratio estimator. Finally, based on this direct ratio estimator, we develop a practical algorithm for density ridge estimation and experimentally demonstrate its usefulness on a variety of datasets. Proceedings of the 20 International Conference on Artificial Intelligence and Statistics (AISTATS) 2017, Fort Lauderdale, Florida, USA. JMLR: W&CP volume 54. Copyright 2017 by the author(s).
منابع مشابه
Nonparametric Ridge Estimation
We study the problem of estimating the ridges of a density function. Ridge estimation is an extension of mode finding and is useful for understanding the structure of a density. It can also be used to find hidden structure in point cloud data. We show that, under mild regularity conditions, the ridges of the kernel density estimator consistently estimate the ridges of the true density. When the...
متن کاملLinear Wavelet-Based Estimation for Derivative of a Density under Random Censorship
In this paper we consider estimation of the derivative of a density based on wavelets methods using randomly right censored data. We extend the results regarding the asymptotic convergence rates due to Prakasa Rao (1996) and Chaubey et al. (2008) under random censorship model. Our treatment is facilitated by results of Stute (1995) and Li (2003) that enable us in demonstrating that the same con...
متن کاملDirect Density-Derivative Estimation and Its Application in KL-Divergence Approximation
Estimation of density derivatives is a versatile tool in statistical data analysis. A naive approach is to first estimate the density and then compute its derivative. However, such a two-step approach does not work well because a good density estimator does not necessarily mean a good densityderivative estimator. In this paper, we give a direct method to approximate the density derivative witho...
متن کاملEstimation of 3D density distribution of chromites deposit using gravity data
We inverse the surface gravity data to recover subsurface 3D density distribution with two strategy. In the first strategy, we assumed wide density model bound for inverting gravity data and In the second strategy, the inversion procedure have been carried out by limited bound density. Wediscretize the earth model into rectangular cells of constant andunidentified density. The number of cells i...
متن کاملA Berry-Esseen Type Bound for a Smoothed Version of Grenander Estimator
In various statistical model, such as density estimation and estimation of regression curves or hazard rates, monotonicity constraints can arise naturally. A frequently encountered problem in nonparametric statistics is to estimate a monotone density function f on a compact interval. A known estimator for density function of f under the restriction that f is decreasing, is Grenander estimator, ...
متن کامل